iFluor® 647 succinimidyl ester

iFluor® 647 SE es razonablemente estable y muestra buena reactividad y selectividad con los grupos amino de proteínas.

Descripción

Los tintes iFluor® de AAT Bioquest están optimizados para marcar proteínas, en particular anticuerpos. Estos tintes son brillantes, fotoestables y tienen un enfriamiento mínimo de las proteínas. Pueden excitarse bien con las principales líneas láser de los instrumentos de fluorescencia (p. ej., 350, 405, 488, 555 y 633 nm). Los colorantes iFluor® 700 tienen un máximo de excitación y emisión de fluorescencia de ~690 nm y ~713 nm respectivamente. Estas características espectrales los convierten en una excelente alternativa al colorante de etiquetado Alexa Fluor® 700 (Alexa Fluor® es la marca comercial de Invitrogen). iFluor® 700 SE es razonablemente estable y muestra buena reactividad y selectividad con los grupos amino de proteínas.

CatalogoProductoPresentación
AAT-1031iFluor® 647 succinimidyl ester1mg
AAT-71031iFluor® 647 succinimidyl ester100 ug
AAT-71510iFluor® 647 succinimidyl ester5mg
AAT-71560iFluor® 647 succinimidyl ester10mg

Importante: Solo para uso en investigación (RUO). Almacenamiento: Congelación (< -15 °C). Minimizar la exposición a la luz.

Propiedades fisicas

Peso Molecular 1274.66
DisolventeDMSO

Espectro

Abrir en Advanced Spectrum Viewer

Propiedades espectrales

Factor de corrección (260 nm)0.03
Factor de corrección (280 nm)0.03
Factor de corrección (656 nm)0.0793
Coeficiente de extinción (cm -1 M -1)2500001
Excitación (nm)656
Emisión (nm)670
Rendimiento cuántico0.251
1 Buffer acuoso (pH 7,2)

Calculadora

Preparación de la solución de stock común

Volumen de DMSO necesario para reconstituir la masa específica de succinimidil éster iFluor® 700 a la concentración dada. Tenga en cuenta que el volumen es solo para preparar la solución madre. Consulte el protocolo experimental de muestra para conocer los buffers experimentales/fisiológicos apropiados.

 0.1 mg0.5 mg1 mg5 mg10 mg
1 mM78.452 µL392.261 µL784.523 µL3.923 mL7.845 mL
5 mM15.69 µL78.452 µL156.905 µL784.523 µL1.569 mL
10 mM7.845 µL39.226 µL78.452 µL392.261 µL784.523 µL

Imagenes

Fig. 1

Figura 1.  Las células HeLa se tiñeron con antitubulina de ratón seguido de iFluorTM 647 de cabra anti-ratón IgG (H+L) (rojo); y los núcleos se tiñeron con DAPI (azul).

Fig. 2

Figura 2Las células HeLa se incubaron con antitubulina de ratón seguida de conjugado de IgG anti-ratón de cabra iFluorTM 647 de AAT (rojo, izquierda) o IgG anti-ratón de cabra Alexa Fluor® 647 (rojo, derecha), respectivamente. Los núcleos celulares se tiñeron con Hoechst 33342 (Blue, Cat#17530).

Fig. 3

Figura 3  Las células HeLa se incubaron con antitubulina de ratón y anti-IgG de ratón de cabra con biotina, seguidas de conjugado iFluor® 647-estreptavidina de AAT (rojo, izquierda) o estreptavidina conjugada con Alexa Fluor® 647 (rojo, derecha), respectivamente.

Fig 4.

Figura 4.  Hibridación fluorescente in situ de sondas de telómero marcadas con Cy5 e iFlour® 647-dUTP en celulas HeLa en Metafase.

Productos Similares

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
iFluor® 350 succinimidyl ester3454502000010.9510.830.23
iFluor® 405 succinimidyl ester4034273700010.9110.480.77
iFluor® 514 succinimidyl ester5115277500010.8310.2650.116
iFluor® 532 succinimidyl ester5375609000010.6810.260.16
iFluor® 555 succinimidyl ester55757010000010.6410.230.14
iFluor® 594 succinimidyl ester58860418000010.5310.050.04
iFluor® 633 succinimidyl ester64065425000010.2910.0620.044
iFluor® 660 succinimidyl ester66367825000010.2610.070.08

Bibliografía

Ver todas las 36 bibliografías: Citation Explorer

Inhibition of MYC suppresses programmed cell death ligand-1 expression and enhances immunotherapy in triple-negative breast cancer
Authors: Li, Xintong and Tang, Lin and Chen, Qin and Cheng, Xumin and Liu, Yiqiu and Wang, Cenzhu and Zhu, Chengjun and Xu, Kun and Gao, Fangyan and Huang, Jinyi and others,
Journal: Chinese Medical Journal (2022): 10–1097

Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy
Authors: Dai, Zan and Wang, Qiaoyun and Tang, Jie and Wu, Min and Li, Haoze and Yang, Yannan and Zhen, Xu and Yu, Chengzhong
Journal: Biomaterials (2022): 121261

Preparation and identification of monoclonal antibodies against porcine CD103
Authors: Zhang, Tao and Yu, Haoyuan and Aryal, Manita and Yang, Jing and Li, Maolin and Li, Shuxian and Zhang, Na and Shi, Han and Li, Baoyu and Liu, Guangliang and others,
Journal: Applied Microbiology and Biotechnology (2022): 1–11

Site-specific labeling and functional efficiencies of human fibroblast growth Factor-1 with a range of fluorescent Dyes in the flexible N-Terminal region and a rigid $\beta$-turn region
Authors: Mohale, Mamello and Gundampati, Ravi Kumar and Kumar, Thallapuranam Krishnaswamy Suresh and Heyes, Colin D
Journal: Analytical biochemistry (2022): 114524

A nano-innate immune system activator for cancer therapy in a 4T1 tumor-bearing mouse model
Authors: Liu, Xiang-Yu and Zhu, Mao-Hua and Wang, Xiao-Yu and Dong, Xiao and Liu, Hai-Jun and Li, Rui-Yang and Jia, Shi-Chong and Lu, Qin and Zhao, Mei and Sun, Peng and others,
Journal: Journal of nanobiotechnology (2022): 1–15

Poly ADP-ribosylation of SET8 leads to aberrant H4K20 methylation in mammalian nuclear genome
Authors: Est{\`e}ve, Pierre-Olivier and Sen, Sagnik and Vishnu, Udayakumar S and Ruse, Cristian and Chin, Hang Gyeong and Pradhan, Sriharsa
Journal: Communications biology (2022): 1–18

The PARP1 Inhibitor Niraparib Represses DNA Damage Repair and Synergizes with Temozolomide for Antimyeloma Effects
Authors: Shen, Hong-Yuan and Tang, Hai-Long and Zheng, Yan-Hua and Feng, Juan and Dong, Bao-Xia and Chen, Xie-Qun
Journal: Journal of Oncology (2022)

A Substance P (SP)/Neurokinin-1 Receptor Axis Promotes Perineural Invasion of Pancreatic Cancer and Is Affected by lncRNA LOC389641
Authors: Ji, Tengfei and Ma, Keqiang and Wu, Hongsheng and Cao, Tiansheng
Journal: Journal of Immunology Research (2022)

RNA-Editing Enzyme ADAR1 p150 Isoform Is Critical for Germinal Center B Cell Response
Authors: Li, Yuxing and Ruan, Gui-Xin and Chen, Wenjing and Huang, Hengjun and Zhang, Rui and Wang, Jing and Li, Yan and Xu, Shengli and Ou, Xijun
Journal: The Journal of Immunology (2022): 1071–1082

Increased maternofoetal transfer of antibodies in a murine model of systemic lupus erythematosus, but no immune activation and neuroimmune sequelae in offspring
Authors: Fonager, Sofie Vestergaard and Winther, Gudrun and Wittenborn, Thomas Rea and Jensen, Lisbeth and Fahlquist-Hagert, Cecilia and Hansen, Lisbeth Ahm and F{\”u}chtbauer, Ernst-Martin and Romero-Ramos, Marina and Degn, S{\o}ren Egedal
Journal: Journal of Neuroimmunology (2022)

Referencias

Ver todas las 49 referencias: Citation Explorer

Sequential ordering among multicolor fluorophores for protein labeling facility via aggregation-elimination based beta-lactam probes
Authors: Sadhu KK, Mizukami S, Watanabe S, Kikuchi K.
Journal: Mol Biosyst (2011): 1766

Visualizing dengue virus through Alexa Fluor labeling
Authors: Zhang S, Tan HC, Ooi EE.
Journal: J Vis Exp. (2011)

Fluorescent “Turn-on” system utilizing a quencher-conjugated peptide for specific protein labeling of living cells
Authors: Arai S, Yoon SI, Murata A, Takabayashi M, Wu X, Lu Y, Takeoka S, Ozaki M.
Journal: Biochem Biophys Res Commun (2011): 211

Neuroanatomical basis of clinical joint application of “Jinggu” (BL 64, a source-acupoint) and “Dazhong” (KI 4, a Luo-acupoint) in the rat: a double-labeling study of cholera toxin subunit B conjugated with Alexa Fluor 488 and 594
Authors: Cui JJ, Zhu XL, Ji CF, Jing XH, Bai WZ.
Journal: Zhen Ci Yan Jiu (2011): 262

Simultaneous detection of virulence factors from a colony in diarrheagenic Escherichia coli by a multiplex PCR assay with Alexa Fluor-labeled primers
Authors: Kuwayama M, Shigemoto N, Oohara S, Tanizawa Y, Yamada H, Takeda Y, Matsuo T, Fukuda S.
Journal: J Microbiol Methods (2011): 119

Alexa Fluor 546-ArIB[V11L;V16A] is a potent ligand for selectively labeling alpha 7 nicotinic acetylcholine receptors
Authors: Hone AJ, Whiteaker P, Mohn JL, Jacob MH, McIntosh JM.
Journal: J Neurochem (2010): 994

Asymmetric trimethine 3H-indocyanine dyes: efficient synthesis and protein labeling
Authors: Song F, Wang L, Qiao X, Wang B, Sun S, Fan J, Zhang L, Peng X.
Journal: Org Biomol Chem (2010): 4249

Neuroanatomical characteristics of acupoint “Chengshan” (BL 57) in the rat: a cholera toxin subunit B conjugated with Alexa Fluor 488 method study
Authors: Zhu XL, Bai WZ, Wu FD, Jiang J, Jing XH.
Journal: Zhen Ci Yan Jiu (2010): 433

Photoactivatable and photoconvertible fluorescent probes for protein labeling
Authors: Maurel D, Banala S, Laroche T, Johnsson K.
Journal: ACS Chem Biol (2010): 507

Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay
Authors: Kecskes M, Kumar TS, Yoo L, Gao ZG, Jacobson KA.
Journal: Biochem Pharmacol (2010): 506

Application Notes (en Ingles)


FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)
iFluor® Dye Selection Guide
FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)